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In this paper a new proof of an identity of Giacomin, Olla, and Spohn is given.
The identity relates the 2 point correlation function of a Euclidean field theory
to the expectation of the Green’s function for a pde with random coefficients.
The Euclidean field theory is assumed to have convex potential. An inequality
of Brascamp and Lieb therefore implies Gaussian bounds on the Fourier trans-
form of the 2 point correlation function. By an application of results from
random pde, the previously mentioned identity implies pointwise Gaussian
bounds on the 2 point correlation function.
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1. INTRODUCTION

The joint papers of Elliott Lieb with Brascamp in the 1970’s are among his
most influential. In this paper we shall be concerned with an inequality in
one of the Brascamp–Lieb papers. (1) This inequality implies a Gaussian
bound on the 2 point correlation function for a Euclidean field theory with
convex potential. In 1994 Helffer and Sjöstand (11) gave a remarkable new
proof of the Brascamp–Lieb inequality. The key point in the proof is a new
representation for the correlation function. Later Naddaf and Spencer (13)

realised that the Helffer–Sjöstand representation allowed one to make a
connection between the 2 point correlation function for a Euclidean field
theory and pde with random coefficients. Using this connection and
the theory of homogenization for pde with random coefficients (12, 15) they



were able to prove that the scaling limit of the Euclidean field theory is
Gaussian.

The connection between the 2 point correlation function for the
Euclidean field theory and pde with random coefficients was made precise
by Giacomin, Olla, and Spohn in ref. 10. They showed that the correlation
function is the expectation of a Green’s function for a pde with random
coefficients. Here we give a new proof of this result in dimension d \ 3. As
part of our proof we shall also give a new construction of the Euclidean
field theory measure first obtained in ref. 9. Our construction follows the
lines for a construction of the measure proposed in ref. 13. It follows then
from results of the author (4) on Green’s functions for pde with random
coefficients (see also ref. 5), that derivatives of the 2 point correlation
function up to second order have Gaussian bounds. The Gaussian bounds
on second derivatives were conjectured by Spencer. (16)

The Euclidean field theories we shall be interested in are determined
by a potential V: Rd

Q R which is a C2 uniformly convex function. Thus
there are positive constants l, L such that

lId [ Vœ(z) [ LId, z ¥ Rd, (1.1)

where Id is the identity d×d matrix and the inequality (1.1) is in the sense
of quadratic forms. We assume also that V is an even function, whence
V(z)=V(−z), z ¥ Rd. Next consider functions w: Zd

Q R on the integer
lattice in Rd. Let W be the space of all such functions and F be the Borel
algebra generated by finite dimensional rectangles {w ¥ W : |w(xi)−ai | < ri,
i=1,..., N}, xi ¥ Zd, ai ¥ R, ri > 0, i=1,..., N, N \ 1. If d \ 3 then one can
define (9) a unique translation invariant probability measure P on (W,F)
which depends on the function V. The measure is formally given as

exp 5− C
x ¥ Zd

V(Nw(x))6 D
x ¥ Zd

dw(x)/normalization. (1.2)

Here Nw is the gradient of the function w. Thus Nw(x)=
(N1w(x),..., Ndw(x)) where

Niw(x)=w(x+ei)−w(x), 1 [ i [ d, (1.3)

and ei ¥ Zd is the vector with 1 as the ith coordinate and 0 for the other
coordinates. Let O ·PW denote expectation w.r. to the measure (1.2). The
Brascamp–Lieb inequality implies a Gaussian bound on the Fourier trans-
form of the 2 point correlation function Ow(x) w(0)PW, x ¥ Zd,

: C
x ¥ Zd

e ix ·tOw(x) w(0)PW : [ 1/2l C
d

i=1
[1− cos(t · ei)], t ¥ [−p, p]d.

(1.4)

934 Conlon



In order to state the identity of Giacomin, Olla, and Spohn we intro-
duce a stochastic differential equation with the probability measure (1.2) as
its invariant measure. Thus consider the infinite dimensional stochastic
equation,

dw(x, t)=−
“

“w(x)
C

xŒ ¥ Zd
V(Nw(xŒ, t)) dt+`2 dB(x, t), x ¥ Zd, t > 0,

(1.5)

where B(x, t), x ¥ Zd, t > 0, are independent copies of Brownian motion.
Let Ŵ be the space of functions w: Zd×RQ R which are continuous. Thus
for each x ¥ Zd the function w(x, t), t ¥ R, is a continuous function of t. Let
F be the Borel algebra generated by all finite dimensional rectangles
{w ¥ Ŵ : |w(xi, ti)−ai | < ri, i=1,..., N}, xi ¥ Zd, ti ¥ R, ai ¥ R, ri > 0, i=
1,..., N, N \ 1. If d \ 3 one can define a unique probability measure P̂ on
(Ŵ, F̂) corresponding to the stationary process associated with the
stochastic equation (1.5). Thus for any fixed t ¥ R the variables
w(x, t), x ¥ Zd, have distribution given by the probability measure
(W,F, P) corresponding to (1.2). We may define translation operators
yx, t, x ¥ Zd, t ¥ R, on Ŵ by yx, tw(z, s)=w(x+z, t+s), z ¥ Zd, s ¥ R. It is
clear that yx, t yxŒ, tŒ=yx+xŒ, t+tŒ and y0, 0=identity. One can also see that the
mapping yx, t: ŴQ Ŵ is Borel measurable and measure preserving. Finally,
it follows from the fact that the space Ŵ consists of continuous functions,
that the mapping (t, w)Q y0, tw, t ¥ R, w ¥ Ŵ, from R× Ŵ to Ŵ is measur-
able. Hence the probability space (Ŵ, F̂, P̂) together with the translation
operators yx, t, x ¥ Zd, t ¥ R, satisfy the conditions of Theorem 1.2 of ref. 4.
We denote by O ·PŴ expectation w.r. to the space (Ŵ, F̂, P̂).

Let a: ŴQ Rd(d+1)/2 be a bounded Borel measurable function from W
to the space of symmetric d×d matrices. We assume that a(w) satisfies an
inequality analogous to (1.1). Thus

lId [ a(w) [ LId, w ¥ Ŵ, (1.6)

where the inequality is in the sense of quadratic forms. Since the mapping
(t, w)Q y0, t w is measurable, it follows that for almost every w ¥ Ŵ we can
consider solutions to the initial value problem,

“u
“t

(x, t, w)=−Nga(yx, tw) Nu(x, t, w), x ¥ Zd, t > 0, w ¥ Ŵ,

u(x, 0, w)=f(x, w), x ¥ Zd, w ¥ Ŵ,

(1.7)
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where f: Zd× ŴQ R is a given measurable function. The operator Ng in
(1.7) is the adjoint of the gradient operator (1.3). The solution of (1.7) may
be written in the form,

u(x, t, w)= C
y ¥ Zd

Ga(x, y, t, w) f(y, w), (1.8)

where Ga(x, y, t, w) is the Green’s function. By translation invariance there
is a function Ga(x, t), x ¥ Zd, t \ 0, such that

OGa(x, y, t, · )PŴ=Ga(x−y, t). (1.9)

We are now able to state our main result.

Theorem 1.1. Let d \ 3 and a: ŴQ Rd(d+1)/2 be defined by a(w)=
Vœ(Nw(0, 0)), w ¥ Ŵ, where V satisfies (1.1). Then a( · ) satisfies (1.6) and
the function Ga(x, t) defined by (1.7), (1.8), and (1.9) satisfies the identity,

Ow(x) w(0)PW=F
.

0
Ga(x, t) dt. (1.10)

The proof of Theorem 1.1 is obtained by first establishing a finite
dimensional version of (1.10). Then the thermodynamic limit is taken. The
main technical issue in the paper is to prove the existence of this limit. In
Section 2 we give a construction of the probability spaces (W,F, P) and
(Ŵ, F̂, P̂) by means of finite dimensional approximations. To construct the
space (W,F, P) by finite dimensional approximation we let L be a positive
even integer and Q=QL … Zd be the lattice points contained in the cube
centered at the origin with side of length L. By a periodic function
w: QQ R we mean a function w on Q with the property that w(x)=w(y)
for all x, y ¥ Q such that x−y=Lek for some k, 1 [ k [ d. Let WQ be the
space of all periodic functions w: QQ R. Evidently WQ, Q=QL can be
identified with RN where N=Ld. LetFQ be the Borel algebra for WQ which
is generated by the open sets of RN. We define a probability measure
PQ, m, m > 0, on (WQ,FQ) by

exp 5− C
x ¥ Q

{V(Nw(x))+1
2 m

2w(x)2}6 D
x ¥ Q

dw(x)/normalization. (1.11)

In the definition (1.11) we are identifying points on the boundary of Q
since WQ consists of periodic functions on Q. It is evident that we can
define translation operators yx, x ¥ Zd, on WQ and that the yx are measure
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preserving on the space (WQ,FQ, PQ, m). Let O ·PQ, m denote expectation for
the space (WQ,FQ, PQ, m). Suppose for some N \ 1, f: RN

Q C is a C2

function satisfying the inequality,

|fœ(z)| [ A exp[B |z|], z ¥ RN, (1.12)

where A and B are constants. We define then

Of(w(x1), w(x2),..., w(xN))PW=lim
mQ 0

lim
LQ.

Of(w(x1), w(x2),..., w(xN))PQL, m.
(1.13)

In Section 2 we show that the limit on the RHS of (1.13) exists provided
d \ 3. The use of the Brascamp–Lieb inequality (1) is crucial to the proof.

The space (W,F, P) was first constructed in ref. 9 (see also ref. 14). In
that construction the elements of the probability space are gradients Nw of
the field w. Hence the construction is valid in all dimensions d \ 1 whereas
our construction by means of (1.13) is restricted to d \ 3. One should note
however that for f: RNd

Q C satisfying (1.12) the limit,

lim
mQ 0

lim
LQ.

Of(Nw(x1), Nw(x2),..., Nw(xN))PQL, m (1.14)

can be shown to exist for all d \ 1 by a similar argument to the one used to
prove (1.13). Hence one expects to be able to construct the Funaki–Spohn
measure (9) also in dimension d=1, 2 by means of the limit (1.14). One can
see from the construction of the measure (Ŵ, F̂, P̂) in Section 2 that the
space (W,F, P) is invariant under the flow of the stochastic differential
equation (1.5). Since the measure is also ergodic with respect to transla-
tions, the uniqueness theorem, Theorem 2.1 of ref. 9, implies that
(W,F, P) is identical to the measure constructed in ref. 9.

From the representation for Ow(x) w(0)PW in Theorem 1.1 and the
bounds on Green’s functions in Theorem 1.2 of ref. 4, we can obtain
pointwise bounds on Ow(x) w(0)PW which correspond to the Brascamp–
Lieb bound (1.4):

Theorem 1.2. For d \ 3 there is a constant Cd > 0 depending only
on d such that

(a) |Ow(x) w(0)PW | [
Cd

L (Ll)
3d+6 1

1+|x|d−2 ,

(b) |ONw(x) w(0)PW | [
Cd

L (Ll)
3d+6 1

1+|x|d−1 .

Let d satisfy 0 [ d < 1. Then there is a constant Cd, d depending only on d
and d such that

(c) |ONw(x) Nw(0)PW | [
Cd, d

L (Ll)
3d+6 1

1+|x|d−2+2d .
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Theorem 1.2 (a) was proved by Naddaf and Spencer (13) by using a
discrete version of the Aronson inequality. (10, 17) Theorem 1.2(c) was
conjectured by Spencer (16) based on corresponding estimates for sine-Gordon
field theories obtained by Brydges andKeller. (2)One should note that in ref. 2
there is a requirement analogous to d < 1. Thus for second derivatives of 2
point correlation functions, we have almost but not exact Gaussian bounds.

Just recently it has been shown in some beautiful work of Delmotte
and Deuschel (6, 7) that one can take d=1 in Theorem 1.2(c). To prove this
they work in configuration space instead of in Fourier space as in ref. 4.
They then use the Harnack inequality for second order elliptic equations, a
deeper inequality than the interpolation theorems used in ref. 4.

The bounds obtained in ref. 2 are on expectations for trigonometric
polynomials of the gradient of the field. It seems possible that one could
extend the methodology of the present paper to obtain these bounds. This
would however be a complicated task. A main point of the work here is to
show that one can obtain by conventional pde methods, estimates on cor-
relation functions which are as sharp as those obtained using multi-scale
perturbation theory. Our method has the added advantage that there is no
small parameter as in the multi-scale perturbation theory. Nevertheless, the
method is still based on perturbation theory. We should also note that
multi-scale perturbation theory has yielded results which do not appear to
be provable by the methods in this paper. In particular, the analyticity of
the pressure for the sine-Gordon field theory (3) is among these.

2. CONSTRUCTION OF THE PROBABILITY SPACES (W, FF, P) AND

(Ŵ, F̂F, P̂).

We turn to the construction of the space (W,F, P) as a limit of the
spaces (WQ,FQ, PQ, m) with probability measure (1.11). Our main task will
be to establish the existence of the limit on the R.H.S. of (1.13). Let L2(Q)
be the space of periodic functions h: QQ Cwith the standard Euclidean inner
product. For a given w ¥ WQ we consider the operator [NgVœ(Nw) N+m2]
acting on L2(Q). In view of (1.1) the operator [NgVœ(Nw) N+m2] is
bounded below by the operator [−lD+m2] on L2(Q), where D is the
standard lattice Laplacian. The eigenfunctions of −D are exp[it · x], x ¥ Q,
where t lies in the dual Q̂ of Q. In fact if Q=QL then Q̂ is the set of lattice
points of (2p/L) Zd which lie in the cube [−p, p]d. Just as with Q, the
boundary points of [−p, p]d are identified , whence there are exactly Ld

distinct points in Q̂. Since the eigenvalues of −D are given by

−D[e it · x]=2 C
d

i=1
[1− cos(t · ei)] e it · x,
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theoperator[−lD+m2] is invertibleonL2(Q)andhence[NgVœ(Nw) N+m2]
is also invertible. Let J: WQ Q C be a C1 function with gradient “J/“w,
where we are identifying WQ with RN. Now for any w ¥ WQ we can think of
“J/“w evaluated at w as a bounded periodic function on Q, whence
“J/“w ¥ L2(Q). Let ( · , · ) denote the inner product on L2(Q) and | · | the
corresponding Euclidean norm. Suppose there are constants A, B > 0 such
that

: “J(w)
“w
: [ A exp[B |w|], w ¥ WQ. (2.1)

Let O ·PQ, m denote expectation on WQ with respect to the measure PQ, m. The
Brascamp–Lieb inequality states that if J satisfies (2.1) then J and “J

“w are
square integrable. Further, there is the inequality,

O|J(w)−OJ( · )PQ, m |2PQ, m [ 71 “J
“w

, [NgVœ(Nw) N+m2]−1 “J
“w
28

Q, m
. (2.2)

One also has in view of (1.1) the inequality,

Oexp[(h, w)]PQ, m [ exp[12 (h, [−lD+m2]−1 h)], (2.3)

for any h ¥ L2(Q).

Lemma 2.1. Suppose Q=QL and m satisfies the inequality 1/L [

m/`l [ 1/2. Let f: RQ C be a C2 function satisfying the inequality,

|fœ(z)| [ A exp [B |z|], z ¥ R, (2.4)

for some constants A, B > 0. Then for d \ 3 there are constants Cd and
functions gd: (0, 1/2)Q R such that

:75 C
x ¥ Q
w(x)26 [f(w(0))−Of(w(0))PQ, m]8

Q, m

:

[
A
l2

gd(m/`l) exp[B2Cd/l]. (2.5)

The function gd can be taken to be gd(r)=cd if d \ 5, g4(r)=c4an[1/r],
g3(r)=c3/r, where cd is a constant depending only on d.

Proof. Observe that the LHS of (2.5) is zero if f is an odd function.
This follows from our assumption that V is an even function. We may
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assume then wlog that f is an even function. We use translation invariance
and the Schwarz inequality to estimate the LHS of (2.5). Thus we have that

:75 C
x ¥ Q
w(x)26 [f(w(0))−Of(w(0))PQ, m]8

Q, m

:2

[
1
L2d
73 C

x ¥ Q
[w(x)2−Ow(x)2PQ, m]4

28
Q, m

×7: C
x ¥ Q

[f(w(x))−Of(w(x))PQ, m]:
28

Q, m
. (2.6)

Let ŵ(t), t ¥ Q̂, be the Fourier transform of w(x),

ŵ(t)= C
x ¥ Q
w(x) e ix ·t, t ¥ Q̂.

From (2.2) it follows that

73 C
x ¥ Q

[w(x)2−Ow(x)2PQ, m]4
28

Q, m

[
4

(2p)d l
F
Q̂
dt O|ŵ(t)|2PQ, m

;5m2/l+2 C
d

i=1
{1− cos(t · ei)}6 ,

where

F
Q̂
dt=12p

L
2d C
t ¥ Q̂

.

We also have from (2.2) that

O|ŵ(t)|2PQ, m [
Ld

l
;5m2/l+2 C

d

i=1
{1− cos(t · ei)}6 .

We conclude then that if gd(r) is defined by

gd(r)=
1

(2p)d
F
Q̂
dt;5r2+2 C

d

i=1
{1− cos(t · ei)}6

2

, (2.7)

there is the inequality,

73 C
x ¥ Q

[w(x)2−Ow(x)2PQ, m]4
28

Q, m
[
4Ld

l2
gd(m/`l). (2.8)
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The function gd of (2.7) is bounded by the function gd in the statement of
the Lemma for r in the region {1/L [ r [ 1/2}. Hence (2.5) follows from
(2.6), (2.8) if f is the function f(z)=Az2 for some constant A.

We can prove (2.5) for general f satisfying (2.4) in a similar fashion.
By (2.2) we have that

7: C
x ¥ Q

[f(w(x))−Of(w(x))PQ, m] :
28

Q, m

[
1

(2p)d l
F
Q̂
dtO|f̂1(w, t)|2PQ, m

;5m2/l+2 C
d

i=1
{1− cos(t · ei)}6 ,

(2.9)

where

f̂1(w, t)= C
x ¥ Q

fŒ(w(x)) e ix ·t.

Since we are assuming f is an even function it follows again from (2.2)
that

O|f̂1(w, t)|2PQ, m [
Ld

l
C
x ¥ Q

H(x) G(x) e ix ·t, (2.10)

where

H(x)=Ofœ(w(x)) fœ(w(0))PQ, m,

and G(x) is the Green’s function satisfying

[−D+m2/l] G(x)=d(x), x ¥ Q,

with d being the Kronecker d function. By the Plancherel theorem it
follows from (2.9), (2.10) that

7: C
x ¥ Q

[f(w(x))−Of(w(x))PQ, m]:
28

Q, m
[
Ld

l2
C
x ¥ Q

H(x) G(x)2.

Since m/`l \ 1/L it follows from (2.3), (2.4) that

|H(x)| [H(0) [ A2 exp[2B2Cd/l],

for some constant Cd depending only on d \ 3. The inequality (2.5) follows
now on using the identity,

C
x ¥ Q

G(x)2=gd(m/`l),

where gd is given by (2.7). L
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Lemma 2.2. Let m > 0. Then for any C2 function f: RQ C satisfy-
ing (2.4) the limit, limLQ. Of(w(0))PQL, m

exists and is finite.

Proof. Suppose L, LŒ are positive even integers with LŒ > 2L, L >
3+`l/m. Let “QL be the lattice points of Zd which form the boundary of
the cube QL … Zd and Int(QL)=QL 0“QL. We define the set UL by

UL={x ¥ “QL : x+ei ¨ QL for some i, 1 [ i [ d,

and x− ej ¥ QL for all j, 1 [ j [ d}.

Observe that Int(QL) 2 UL is a cube containing Ld lattice points. For each
x ¥ “QL, 0 [ t [ 1, we define a function Vx, t: WLŒ Q R as follows:

(a) If x ¥ UL then

Vx, t(w)=V(w(x+e1)−w(x),..., t[w(x+ej)−w(x)]

+(1−t)[w(x−(L−1) ej)−w(x)],..., w(x+ed)−w(x)),

where we introduce the interpolation parameter t for any j with x+ej ¨ QL.
(b) If x ¥ “QL 0UL then

Vx, t(w)=V(w(x+e1)−w(x),..., t[w(x+ej)−w(x)],..., w(x+ed)−w(x)),

where we introduce the parameter t for any j with x+ej ¥ Int(QL) 2 UL.

For 0 [ t [ 1 we introduce a corresponding LagrangianLt on WLŒ by

Lt(w)= C
x ¥ QLŒ−“QL

V(Nw(x))+ C
x ¥ “QL

Vx, t(w)+ C
x ¥ QLŒ

1
2 m

2w(x)2,

where as in the definition of the measure (1.11) we are identifying points on
the boundary of QLŒ. We associate withLt a measure

exp[−Lt(w)] D
x ¥ QLŒ

dw(x)/normalization. (2.11)

Evidently if t=1 the measure (2.11) is identical to the measure (1.11) with
Q=QLŒ. If t=0 then in the measure (2.11) the variables w(x),
x ¥ Int(QL) 2 UL, are independent from the variables w(x), x ¥ QLŒ 0

[Int(QL) 2 UL]. Hence if we denote expectation w.r. to the measure (2.11)
by O ·PQLŒ, m, t

we have that

Of(w(0))PQLŒ, m, 1
=Of(w(0))PQLŒ, m

,

Of(w(0))PQLŒ, m, 0
=Of(w(0))PQL, m

.
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We can therefore compare Of(w(0))PQLŒ, m
and Of(w(0))PQL, m

by differen-
tiating (2.11) w.r. to t and using the fundamental theorem of calculus. We
have then,

Of(w(0))PQLŒ, m
−Of(w(0))PQL, m

=
1
Ld C

x ¥ Int(QL) 2 UL

{Of(w(x))PQLŒ, m, 1
−Of(w(x))PQLŒ, m, 0

}

=
−1
Ld F

1

0
dt 75dLt(w)

dt
−7dLt(w)

dt
8

QLŒ, m, t

6

×5 C
x ¥ Int(QL) 2 UL

{f(w(x))−Of(w(x))PQLŒ, m, t
}68

QLŒ, m, t

.

Hence if we use the Schwarz inequality we have that

|Of(w(0))PQLŒ, m
−Of(w(0))PQL, m

|

[
1
Ld sup

0 [ t [ 1

75dLt(w)
dt

−7dLt(w)
dt
8

QLŒ, m, t

6281/2
QLŒ, m, t

× sup
0 [ t [ 1

7: C
x ¥ Int(QL) 2 UL

f(w(x))−Of(w(x))PQLŒ, m, t
:281/2

QLŒ, m, t

. (2.12)

We can estimate the RHS of (2.12) by using the Brascamp–Lieb inequality
provided we can obtain a suitable lower bound on the Hessian L'

t (w) of
the LagrangianLt(w). We have already observed that

L'

1 (w) \ −lDLŒ+m2,

where DLŒ is the lattice Laplacian on QLŒ with periodic boundary condi-
tions. It is easy to see also that

L'

0 (w) \ −l[DL é I+I é DLŒ, L]+m2,

where DL is the periodic Laplacian acting on Int(QL) 2 UL and DLŒ, L is the
Laplacian on QLŒ 0[Int(QL) 2 UL] with Neumann boundary conditions on
the boundary of Int(QL) 2 UL. More generally, for 0 [ t [ 1 there is the
inequality,

L'

t (w) \ −l[t2DLŒ+(1−t)2 {DL é I+I é DLŒ, L}]+m2. (2.13)
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It follows from (2.13) and Brascamp–Lieb that if 0 [ t [ 1/2, then

7: C
x ¥ Int(QL) 2 UL

f(w(x))−Of(w(x))PQLŒ, m, t
:281/2

QLŒ, m, t

[
4Ld

l
C

x ¥ Int(QL) 2 UL

H(x) G(x), (2.14)

where

H(x)=OfŒ(w(x)) fŒ(w(0))PQLŒ, m, t
,

5−DL+
4m2

l
6 G(x)=d(x), x ¥ Int(QL) 2 UL.

We conclude that the LHS of (2.14) is bounded by

4Ld

l
H(0) C

x ¥ Int(QL) 2 UL

G(x)=
Ld

m2 H(0).

In view of (2.13) one has an inequality like (2.3) for the measure O ·PQLŒ, m, t
.

Since f satisfies (2.4) it follows that there is a constant Cd depending only
on d \ 3 such that

H(0) [ A2 exp[2B2Cd/l].

We conclude then that if 0 [ t [ 1/2, there is the inequality,

7: C
x ¥ Int(QL) 2 UL

f(w(x))−Of(w(x))PQLŒ, m, t
:28

QLŒ, m, t

[
Ld

m2 A
2 exp[2B2Cd/l].

(2.15)

We can make a similar argument for 1/2 [ t [ 1 by replacing DL by DLŒ in
the proof of (2.15). We can estimate the expectation of dLt(w)/dt on
the RHS of (2.12) similarly to the way we obtained (2.15). Thus by
Brascamp–Lieb there is the inequality,

75dLt(w)
dt

−7dLt(w)
dt
8

QLŒ, m, t

628
QLŒ, m, t

[ C
x, y ¥ QLŒ

Ogt(w, x) Gt(x, y) gt(w, y)PQLŒ, m, t
, (2.16)
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where Gt(x, y) is the kernel of the inverse of the operator on the RHS of
(2.13). The function gt has the property that

gt(w, x)=0, x ¨N(“QL),

|gt(w, x)| [ CL C
y ¥N(x) 5N(“QL)

|w(y)|, x ¥N(“QL),

for some universal constant C. Here N(“QL) is the neighborhood of “QL

with radius 1. By N(x) we mean the union of the neighborhoods of x and
x−(L−1) ej, 1 [ j [ d, with radius 1. Observe that Gt satisfies

Gt(x, y) \ 0, x, y ¥ QLŒ, C
y ¥ QLŒ

Gt(x, y)=
1
m2 .

We conclude that the LHS of (2.16) is bounded above by

CdL
2

m2 C
x ¥N(“QL)

Ow(x)2PQLŒ, m, t
[
CdL

2

m2 C
x ¥N(“QL)

Gt(x, x) [
CdL

2

m4 |N(“QL)|,

for some constant Cd depending only on d. Evidently the number of lattice
points |N(“QL)| in N(“QL) is bounded by CdLd−1 for some constant Cd

depending only on d. Hence there is a constant Cd depending only on d
such that

75dLt(w)
dt

−7dLt(w)
dt
8

QLŒ, m, t

628
QLŒ, m, t

[
CdL

2Ld−1

m4 . (2.17)

The result follows now from (2.12), (2.15), and (2.17). L

Proposition 2.1. Let W be the space of functions w: Zd
Q R and F

be the corresponding Borel algebra generated by finite dimensional rec-
tangles. Then if d \ 3 there is a unique probability measure P on (W,F)
with the properties:

(a) If N \ 1 and f: RN
Q C is a C2 function satisfying the inequality

|fœ(z)| [ A exp[B |z|], z ¥ RN, (2.18)

for some constants A, B, then for any xi ¥ Zd, 1 [ i [N, the function
f(w(x1), w(x2),..., w(xN)) is integrable w.r. to (W,F, P).
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(b) Denoting expectation w.r. to (W,F, P) by O ·PW, there is the
identity,

Of(w(x1), w(x2),..., w(xN))PW=lim
mQ 0

lim
LQ.

Of(w(x1), w(x2),..., w(xN))PQL, m.

(c) The translation operators yx, x ¥ Zd, are measure preserving and
ergodic w.r. to (W,F, P).

Proof. We have already seen in Lemma 2.2 that if f: RQ C is C2

and satisfies (2.4) then limLQ. Of(w(0))PQL, m exists. Suppose now that
m, mŒ satisfy the inequality `l/L [ mŒ < m. Define t0 by `t0 m=mŒ.
Then there is the identity

Of(w(0))PQ, m −Of(w(0))PQ, mŒ

=−F
1

t0
dt 75m

2

2
C
x ¥ Q
w(x)26 [f(w(0))−Of(w(0))PQ,`t m]8

Q,`t m
.

If d=3 it follows from (2.5) that

|Of(w(0))PQ, m −Of(w(0))PQ, mŒ | [
c3A
l3/2
exp[B2C3/l]

m
2
F
1

t0

dt

`t
.

We conclude from this last inequality that

lim
mQ 0

lim
LQ.

Of(w(0))PQL, m
exists if d=3.

We can similarly conclude from Lemma 2.1 that the limit exists for all
d \ 3 . Since the measures O ·PQL, m

form a tight sequence we have that there
exists a unique Borel probability measure m0 on R such that

Of(w(0))Pm0=lim
mQ 0

lim
LQ.

Of(w(0))PQL, m

for any C2 function f: RQ C satisfying (2.4). Generalizing Lemmas 2.1,
2.2, one sees that for any N \ 1 and xi ¥ Zd, 1 [ i [N, there exists a
unique Borel probability measure mx1,..., xN on R

N such that

Of(w(x1), w(x2), ..., w(xN))Pmx1,..., xN
=lim

mQ 0
lim
LQ.

Of(w(x1), w(x2), ..., w(xN))PQL, m, (2.19)

for any C2 function f: RN
Q C satisfying (2.18). It is easy to see that the set

of measures mx1,..., xN , xi ¥ Zd, 1 [ i [N, N \ 1, form a consistent set.
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Hence the probability measure P on (W,F) exists by the Kolmogorov
extension theorem. (8) Evidently (b) follows from (2.19). The fact that the
translation operators yx, x ¥ Zd, are measure preserving w.r. to (W,F, P) is
clear from (b). The ergodicity is a consequence of the Brascamp–Lieb
inequality. L

We turn now to the construction of the probability space (Ŵ, F̂, P̂)
which gives the stationary process for the stochastic equation (1.5). We
shall first do this for a finite cube Q. We consider as before the space WQ of
periodic functions w: QQ R and letLQ, m: WQ Q R be defined by

LQ, m(w)= C
x ¥ Q

{V(Nw(x))+1
2 m

2w(x)2},

whence the measure (1.11) is the probability measure corresponding to
Lebesgue measure on WQ weighted by exp[−LQ, m(w)]. Let f: WQ Q C be
a C2 function satisfying (2.18), where Q=QL, N=Ld. Then one can solve
the initial value problem

“u
“t

(w, t)=C
x ¥Q

3 −5“LQ, m(w)
“w(x)
6 “
“w(x)

+5 “
“w(x)
624 u(w, t), w ¥WQ, t > 0,

u(w, 0)=f(w), w ¥WQ.

The solution can be written as

u(w, t)=F
RN

GQ, m(w, wŒ, t) f(wŒ) dwŒ,

where GQ, m(w, wŒ, t) > 0 is the Green’s function and satisfies the identity,

F
RN

GQ, m(w, wŒ, t) dwŒ=1, w ¥ WQ, t > 0.

Let ŴQ be the space of functions w: QQ R, periodic on Q and continuous
in the R variable. We denote by F̂Q the Borel algebra of subsets of ŴQ

generated by all finite dimensional rectangles {w ¥ ŴQ : |w(xi, ti)−ai | < ri,
i=1,..., n}, xi ¥ Q, ti ¥ R, ai ¥ R, ri > 0, i=1,..., n, n \ 1. Then there is a
probability measure P̂Q, m on (ŴQ, F̂Q) such that for any C2 function
f: Rn

Q C satisfying (2.18) the function f(w(x1, t1),..., w(xn, tn)) is inte-
grable on (ŴQ, F̂Q, P̂Q, m) for any xi ¥ Q, 1 [ i [ n, t1 < t2 < · · · < tn, and
there is the identity,
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Of(w(x1, t1),..., w(xn, tn))PQ, m

=7F
RN(n−1)

dw2 · · · dwn f(w1(x1),..., wn(xn)) GQ, m(w1, w2, t2 −t1)

×GQ, m(w2, w3, t3 −t2) · · ·GQ, m(wn−1, wn, tn −tn−1)8
Q, m

. (2.20)

The expectation O ·PQ, m on the LHS of (2.20) refers to the expectation w.r.
to the probability space (ŴQ, F̂Q, P̂Q, m). The expectation O ·PQ, m on the
RHS of (2.20) refers to the expectation w.r. to the measure (1.11) on func-
tions w1 ¥ WQ. It is evident that the translation operators yx, t, x ¥ Zd, t ¥ R,
defined by yx, tw(z, s)=w(x+z, t+s), z ¥ Q, s ¥ R, are measure preserving
on the space (ŴQ, F̂Q, P̂Q, m). One can also further see that the time transla-
tion operators are ergodic.

We need now to show that the probability space (ŴQ, F̂Q, P̂Q, m)
defined by (2.20) has a limit as |Q|Q.. To do this we shall construct
(ŴQ, F̂Q, P̂Q, m) by using stochastic differential equations instead of with
Green’s functions as in (2.20). For x ¥ Q let B(x, t), t \ 0, be independent
copies of Brownian motion, where we identity boundary points of Q. Thus
each realization of the Brownian motion yields a continuous function Bt,
t \ 0, with values in WQ and B0 is the zero function in WQ. Since the vector
field “LQ, m(w)/“w on WQ is Lipschitz there is for any w0 ¥ WQ a unique
solution wt, t \ 0, of the integral equation,

wt=w0+`2 Bt −F
t

0

“LQ, m(ws)
“w

ds. (2.21)

The equation (2.20) is then equivalent to

Of(w(x1, t1),..., w(xn, tn))PQ, m

=Of(w0(x1), wt2 − t1 (x2), wt3 − t1 (x3),..., wtn − t1 (xn))PQ, m, W,
(2.22)

where O ·PQ, m, W means that integration over w0 is with respect to the
measure (1.11), and integration over wt with given w0 is with respect to the
Wiener measure. Now the solution of (2.21) can be generated by an itera-
tion process at least for small t. Thus for N=0, 1, 2,... we define wt, N

inductively by

wt, N=w0+`2 Bt −F
t

0

“LQ, m(ws, N−1)
“w

ds, (2.23)
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with wt, 0=w0+`2 Bt. We can obtain a rate of convergence of the Nth
iterate of (2.23) to the solution of (2.21).

Lemma 2.3. There is a constant cd > 0, depending only on d, such
that if cd(L+m2) t < 1 then the Nth iterate wt, N of (2.23) and the solutions
of (2.21) satisfy the inequality,

O[ sup
0 [ s [ t

|ws(0)−ws, N(0)|]2PQ, m, W

[
[cd(L+m2) t]2N

[1−cd(L+m2) t]2 Cd(L+m2)2 t[t+Ow2
0(0)PQ, m],

for some constant Cd depending only on d.

Proof. For w ¥ WQ we define ||w|| to be

||w||2= C
x ¥ Q

|w(x)|2 e−2 |x|

it is easy to see from (2.23) that

||wt, N+1 −wt, N || [ cd(L+m2) t sup
0 [ s [ t

||ws, N −ws, N−1 ||,

for some constant cd > 0 depending only on d. Hence we have by induction
that

sup
0 [ s [ t

||ws, N+1 −ws, N || [ [cd(L+m2) t]N sup
0 [ s [ t

||ws, 1 −ws, 0 ||.

Using the fact that the iterates of (2.23) converge to the solution of (2.21)
we have from the previous inequality that

sup
0 [ s [ t

||ws −ws, N || [
[cd(L+m2) t]N

[1−cd(L+m2) t]
sup

0 [ s [ t
||ws, 1 −ws, 0 ||. (2.24)

Since |ws(0)−ws, N(0)| [ ||ws −ws, N || the result will follow if we can show
that

75 sup
0 [ s [ t

||ws, 1 −ws, 0 ||6
28

Q, m, W
[ Cd(L+m2)2 [t+Ow2

0(0)PQ, m], (2.25)
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for some constant Cd depending only on d. It is clear there is a constant C
−

d

such that

sup
0 [ s [ t

||ws, 1 −ws, 0 ||2 [ C −d(L+m2)2 t[||w0 ||2+ sup
0 [ s [ t

||Bs ||2].

The inequality (2.25) now follows from the inequalities,

O||w0 ||2PQ, m, W=5 C
x ¥ Q

e−2 |x|6 Ow2
0(0)PQ, m,

O sup
0 [ s [ t

||Bs ||2PQ, m, W [ 5 C
x ¥ Q

e−2 |x|6 4t. L

Next we use the method of proving Proposition 2.1(b) to show that
one can let |Q|Q., mQ 0 on the RHS of (2.22).

Lemma 2.4. Let n \ 1 and f: Rn
Q C be a C2 function satisfying

(2.18). Then the limit

lim
mQ 0

lim
LQ.

Of(w(x1, t1),..., w(xn, tn))PQL, m (2.26)

exists for any x1,..., xn ¥ Zd, t1 [ t2 [ · · · [ tn, provided d \ 3.

Proof. We shall first prove the existence of the limit (2.26) when wt is
replaced by wt, N for any N, on the RHS of (2.22). To see this first note that
the conditional expectation,

Of(w0(x1), wt2 − t1, N (x2),..., wtn − t1, N (xn)) | w0PQ, m, W

=g(w0(y1), w0(y2),..., w0(yp)), (2.27)

where the variables y1, y2,..., yp include the variables x1, x2,..., xn and
neighbors of them in Zd within a distance N. Since the function V of (1.1)
is C2 and f satisfies (2.18) it follows that g is a C1 function which satisfies
the inequality,

|gŒ(z)| [ A exp[B |z|], z ¥ Rp,

for some constants A, B. We conclude then from Proposition 2.1(b) by
approximating g by a C2 function that

lim
mQ 0

lim
LQ.

Og(w0(y1),..., w0(yp))PQL, m exists.
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Next we use Lemma 2.3 to show that the limit (2.26) exists provided
cdL(tn −t1) < 1. In fact on restricting m to satisfy cd(L+m2)(tn −t1) < 1 we
have that

|Of(w0(x1), wt2 − t1 (x2),..., wtn − t1 (xn))PQ, m, W

−Of(w0(x1), wt2 − t1, N (x2),..., wtn − t1, N (xn))PQ, m, W |

[
[cd(L+m2)(tn −t1)]N

[1−cd(L+m2)(tn −t1)]
C1/2

d

c1/2
d

[tn −t1+Ow2
0(0)PQ, m]1/2

×F
1

0
dc C

n

j=2
O|f −j(w0(x1), wt2 − t1 (x2),..., cwtj − t1 (xj)

+(1− c) wtj − t1, N(xj), wtj+1 −t1, N(xj+1),..., wtn − t1, N(xn))|2P
1/2
Q, m, W, (2.28)

where f −j denotes the derivative of f w.r. to the jth variable. Observe now
from (2.3) that

Oexp[A |wt(x)|]PQ, m, W=Oexp[A |wt(0)|]PQ, m, W

=Oexp[A |w0(0)|]PQ, m [ 2 exp[CdA2/l],

provided d \ 3. We also have from the argument of Lemma 2.3 that

Oexp[A |wt(x)−wt, N(x)|]PQ, m, W

=Oexp[A |wt(0)−wt, N(0)|]PQ, m, W

[ Oexp[A sup
0 [ s [ t

||ws, 1 −ws, 0 ||/{1−cd(L+m2) t}]PQ, m, W,

provided cd(L+m2) t < 1. We also have the inequality,

sup
0 [ s [ t

||ws, 1 −ws, 0 || [ Cd(L+m2) C
x ¥ Q

e−|x|[|w0(x)|+ sup
0 [ s [ t

|Bs(x)|].

If we use the inequality,

e e |z| [ 4 `e cosh`e z, 0 < e [ 1
4 , z ¥ R,

then it is clear from (2.3) that

7exp 5A C
x ¥ Q

e−|x| |w0(x)|68
Q, m

[ Cd exp[CdA2/l], (2.29)
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for some constant Cd depending only on d \ 3. There is also the inequality,

Oexp[A sup
0 [ s [ t

| Bs(x)]PW [ exp[CA2t], (2.30)

for some universal constant C. We can conclude now from the last two
inequalities and (2.28) that the limit (2.26) holds provided cdL(tn −t1) < 1.
It is not difficult to generalize the previous argument to remove the restric-
tion cdL(tn −t1) < 1. We can assume wlog that cdL(tk −tk−1) < 1, k=
2,..., n. We then define wt2, t1, N=wt2 − t1, N as before but now wt3, t2, N as the
Nth iterate of (2.23) over a time interval of length t3 −t2 with initial condi-
tion wt2, t1, N. We similarly define wtk, tk−1, N, 3 [ k [ n. Then we obtain
analogues of the identity (2.27) and the inequality (2.28). L

Lemma 2.4 enables us to prove the analogue of Proposition 2.1.

Proposition 2.2. Let Ŵ be the space of functions w: Zd×RQ R
continuous in the R variable. Let F̂ be the corresponding Borel algebra
generated by finite dimensional rectangles. Then if d \ 3 there is a unique
probability measure P̂ on (Ŵ, F̂) with the properties:

(a) If f: Rn
Q C is a continuous function satisfying the inequality

|f(z)| [ A exp[B |z|], z ¥ Rn, (2.31)

for some constants A, B, then for any xi ¥ Zd, ti ¥ R, 1 [ i [ n, the function
f(w(x1, t1),..., w(xn, tn)) is integrable w.r. to (Ŵ, F̂, P̂).

(b) Denoting expectation w.r. to (Ŵ, F̂, P̂) by O ·PŴ, there is the
identity,

Of(w(x1, t1),..., w(xn, tn))PŴ=lim
mQ 0

lim
LQ.

Of(w(x1, t1),..., w(xn, tn))PQL, m,
(2.32)

where the RHS of (2.32) is defined by (2.22).

(c) The translation operators yx, t, x ¥ Zd, t ¥ R, are measure preserv-
ing.

Proof. Arguing as in Proposition 2.1, one sees that for any n \ 1 and
xi ¥ Zd, ti ¥ R, 1 [ i [ n, there exists a unique Borel probability measure
m(x1, t1),..., (xn, tn) on R

n such that

Of(w(x1, t1),..., w(xn, tn))Pm(x1, t1),..., (xn, tn)
=lim

mQ 0
lim
LQ.

Of(w(x1, t1),..., w(xn, tn))PQL, m,
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for any continuous function f: Rn
Q C satisfying (2.31). Evidently the set

of measures m(x1, t1),..., (xn, tn), xi ¥ Zd, ti ¥ R, 1 [ i [ n, form a consistent set.
Hence by the Kolmogorov extension theorem the probability measure P̂ on
(Ŵ, F̂) exists provided we can show that w(x, t) is continuous w.r. to t
with probability 1 on (Ŵ, F̂, P̂). To see this observe from the argument of
Lemma 2.3 that

sup
0 [ s [ t

||ws || [ [||w0 ||+`2 sup
0 [ s [ t

||Bs ||]/[1−cd(L+m2) t], (2.33)

provided cd(L+m2) t < 1. We also have from (2.21) that for h > 0 small
there is the inequality,

sup
0 [ s, sŒ [ t,
|s−sŒ| [ h

|ws(0)−wsŒ(0)|

[`2 sup
0 [ s, sŒ [ t,
|s−sŒ| [ h

|Bs(0)−BsŒ(0)|+cd(L+m2) h sup
0 [ s [ t

||ws ||. (2.34)

Observe from (2.33), (2.29), and (2.30) that sup0 [ s [ t ||ws || is exponentially
integrable for cd(L+m2) t < 1. Hence it follows from (2.34) that ws(0) is
uniformly continuous in the interval 0 [ s [ t with probability 1. L

3. PROOF OF THEOREM 1.1

As a first step in proving Theorem 1.1 we obtain a finite dimensional
version of the theorem. Corresponding to (1.7) we consider the initial value
problem,

“u
“t

(x, t, w)=−Nga(yx, tw) Nu(x, t, w), x ¥ Q, t > 0, w ¥ ŴQ,

u(x, 0, w)=f(x, w), x ¥ Q, w ¥ ŴQ,

(3.1)

where f: Q× ŴQ Q R is a given measurable function, periodic on Q. The
solution of (3.1) may be written in the form,

u(x, t, w)= C
y ¥ Q

Ga, Q(x, y, t, w) f(y, w), (3.2)

where Ga, Q(x, y, t, w) is the Green’s function. It is evident there is a func-
tion Ga, Q, m(x, t), x ¥ Q, t \ 0, such that

OGa, Q(x, y, t, · )PQ, m=Ga, Q, m(x−y, t). (3.3)
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We then have the following analogue of Theorem 1.1:

Lemma 3.1. Leta: ŴQ Q Rd(d+1)/2bedefinedbya(w)=Vœ(Nw(0, 0)),
w ¥ ŴQ, where V satisfies (1.1). Then a( · ) satisfies (1.6) and the function
Ga, Q, m(x, t) defined by (3.1), (3.2), and (3.3) satisfies the identity,

Ow(x) w(0)PQ, m=F
.

0
Ga, Q, m(x, t) e−m2t dt. (3.4)

Proof. It follows from the fundamental identity of Helffer–
Sjöstrand (11) that

Ow(x) w(0)PQ, m=[dx, [NgVœ(Nw) N+m2+A]−1 d0]Q, m, (3.5)

where the inner product [ · , · ]Q, m on the RHS of (3.5) refers to an inner
product on the space of square integrable functions L2(Q×WQ). Thus for
f, g: Q×WQ Q C we define

[f, g]Q, m= C
x ¥ Q

Of(x, · ) g(x, · )PQ, m.

The operator A acts on functions f: WQ Q C by

Af(w)=− C
x ¥ Q

3 −5“LQ, m(w)
“w(x)
6 “
“w(x)

+5 “
“w(x)
624 f(w).

The dy: Q×WQ Q R is defined for any y ¥ Q by dy(x, w)=d(x−y) where d
is the Kronecker d function. We can rewrite the expression on the RHS of
(3.5) as

F
.

0
dt e−m2t[dx, exp[−t{NgVœ(Nw) N+A}] d0]Q, m.

Hence it will be sufficient to show that

Ga, Q, m(x, t)=[dx, exp[−t{NgVœ(Nw) N+A}] d0]Q, m. (3.6)

Let v(x, t, w) be the solution to the initial value problem,

“v
“t

(x, t, w)=−{NgVœ(Nw) N+A} v(x, t, w), x ¥ Q, t > 0, w ¥ WQ,

v(x, 0, w)=g(x, w), x ¥ Q, w ¥ WQ, (3.7)
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For w ¥ ŴQ, t ¥ R, let wt ¥ WQ be the function wt(x)=w(x, t), x ¥ Q.
Suppose now the function f(x, w) of (3.1) depends only on x, w0. Then the
solution u(x, t, w) of (3.1) depends only on ws, 0 [ s [ t. It follows now
from (3.1), (3.7) that

d
ds

C
x ¥ Q

Ou(x, s, w) v(x, t−s, ws)PQ, m=0, 0 [ s [ t.

We conclude that

C
x ¥ Q

Ou(x, t, w) g(x, wt)PQ, m= C
x ¥ Q

Of(x, w0) v(x, t, w0)PQ, m.

If we take f=d0, g=dx in the previous identity we obtain (3.6). L

Proof of Theorem 1.1. It follows from Proposition 2.1 that the
limit of the LHS of (3.4) converges as |Q|Q., mQ 0 to the LHS of (1.10).
Hence we need to show that the limit of the RHS of (3.4) converges to the
RHS of (1.10) as |Q|Q., mQ 0. It follows from a discrete Aronson
inequality (10) or by the argument of ref. 4 that if Q=QL and m \`l/L
then

e−m2t |Ga, Q, m(x, t)| [ C/[1+td/2], t \ 0,

for a constant C depending only on d, l, L. Hence for d \ 3 there is the
inequality,

F
.

0
[1−e−gt] e−m2t |Ga, Q, m(x, t)| dt [ Cgd/2−1, 0 [ g [ 1,

for a constant C depending only on d, l, L. It is therefore sufficient to
show that for any g > 0 there is the limit,

lim
mQ 0

lim
LQ.

F
.

0
e−gtGa, QL, m(x, t) dt=F

.

0
e−gtGa(x, t) dt. (3.8)

We will prove (3.8) by using Proposition 2.2 and a perturbation expansion.
To do this we put b(w)=[LId −a(w)]/L. In view of (1.6) it follows that

0 [ b(w) [ [1−l/L] Id, (3.9)
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where the inequality in (3.9) is in the sense of quadratic forms. Let
L2(Q×R+, Cd) be the Hilbert space of vector fields g: Q×R+

Q Cd with
norm defined by

||g||2= C
x ¥ Q

F
.

0
dt |g(x, t)|2.

We define an operator TL, Q on the vector fields g by TL, Qg(x, t)=Nu(x, t)
where u(x, t) is the solution to the equation,

1
L

“u
“t

(x, t)=Du(x, t)+Ngg(x, t), t > 0,

u(x, 0)=0, x ¥ Q.

(3.10)

It is easy to see that TL, Q is a bounded operator on L2(Q×R+, Cd) with
||TL, Q || [ 1. For fixed w ¥ W we may also define an operator bw on
L2(Q×R+, Cd) by

bwg(x, t)=b(yx, tw) g(x, t), x ¥ Q, t > 0.

Evidently from (3.9) bw is a bounded operator on L2(Q×R+, Cd) with
||bw || [ 1−l/L. Let GQ(x, t), x ¥ Q, t > 0, be the Green’s function satisfying
the equation,

“GQ

“t
(x, t)=DGQ(x, t), x ¥ Q, t > 0,

GQ(x, 0)=d(x), x ¥ Q.

(3.11)

Observe that NGQ ¥ L2(Q×R+, C) with norm satisfying ||NGQ || [ 1/`2.
Now the function Ga, Q(x, 0, t, w) of (3.2) satisfies the equation,

1
L

“Ga, Q

“t
=DGa, Q+Ng(b(yx, t w)) NGa, Q t > 0,

Ga, Q(x, 0, 0, w)=d(x), x ¥ Q.

(3.12)

If we compare (3.12) with (3.10), (3.11) we see that NGa, Q(x, 0, t, w) satis-
fies the equation,

NGa, Q=NGL, Q+TL, Q(bw NGa, Q), (3.13)
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where GL, Q(x, t)=GQ(x, Lt). Since ||NGQ || [ 1/`2 it follows that ||NGL, Q ||
[ 1/`2 L. Since ||TL, Qbw || [ 1−l/L the Neumann series for the solution
of (3.13) converges. For any n=1, 2,..., we write

NGa, Q=C
n

k=0
(TL, Qbw)k NGL, Q+(TL, Qbw)n+1 [I−TL, Qbw]−1 NGL, Q.

Define Ga, Q, n by Ga, Q, n(x, t, w)=GL, Q(x, t)+u(x, t) where u(x, t) is the
solution to (3.10) with g(x, t) given by

g(x, t)=b(yx, t w) C
n−1

k=0
(TL, Qbw)k NGL, Q(x, t).

It follows from Proposition 2.2 that

lim
mQ 0

lim
LQ.

F
.

0
dt e−gtOGa, QL, n(x, t, · )PQL, m

=F
.

0
dt e−gtOGa, n(x, t, · )PŴ, (3.14)

where Ga, n(x, t, w)=limLQ. Ga, QL, n(x, t, w). We need to bound the error
Ga, Q −Ga, Q, n as |Q|Q.. To see this first note from (3.10) that

C
x ¥ Q

|u(x, t)|2 [ L ||g||2/2,

whence the solution u(x, t) of (3.10) satisfies the inequality,

F
.

0
e−gt |u(x, t)| dt [`L ||g||/g`2. (3.15)

Now Ga, Q −Ga, Q, n is the solution to (3.10) with g given by

g=b(yx, t w)(TL, Qbw)n [I−TL, Qbw]−1 NGL, Q.

It follows therefore from (3.15) that

F
.

0
e−gt |Ga, Q(x, 0, t, w)−Ga, Q, n(x, t, w)| dt [ 11−

l

a
L2

n L

2lg
. (3.16)

Evidently for any g > 0 we can make the RHS of (3.16) as small as we
please by simply taking n large enough. The result follows from this and
(3.14). L
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